Power Maps and Subvarieties of the Complex Algebraic N–torus
نویسندگان
چکیده
Given a subvariety V of the complex algebraic torus G n m defined by polynomials of total degree at most d and a power map φ : G n m → G n m , the points x whose forward orbits O φ (x) belong to V form its stable subvariety S(V, φ). The main result of the paper provides an upper bound T = T (n, d, φ) for the number of iterations of the power map φ required to " cut off " the points of V that do not belong to S.
منابع مشابه
Compactifications of Subvarieties of Tori
We study compactifications of subvarieties of algebraic tori defined by imposing a sufficiently fine polyhedral structure on their non-archimedean amoebas. These compactifications have many nice properties, for example any k boundary divisors intersect in codimension k. We consider some examples including M0,n ⊂ M0,n (and more generally log canonical models of complements of hyperplane arrangem...
متن کاملLifting Tropical Intersections
We show that points in the intersection of the tropicalizations of subvarieties of a torus lift to algebraic intersection points with expected multiplicities, provided that the tropicalizations intersect in the expected dimension. We also prove a similar result for intersections inside an ambient subvariety of the torus, when the tropicalizations meet inside a facet of multiplicity 1. The proof...
متن کاملClassification of Irreducible integrable modules for toroidal Lie-algebras with finite dimensional weight spaces
The study of Maps (X,G), the group of polynomial maps of a complex algebraic variety X into a complex algebraic group G, and its representations is only well developed in the case that X is a complex torus C. In this case Maps (X,G) is a loop group and the corresponding Lie-algebra Maps (X, ◦ G) is the loop algebra C[t, t]⊗ ◦ G. Here the representation comes to life only after one replaces Maps...
متن کاملProduct preservation and stable units for reflections into idempotent subvarieties
We give a necessary and sufficient condition for the preservation of finite products by a reflection of a variety of universal algebras into an idempotent subvariety. It is also shown that simple and semi-left-exact reflections into subvarieties of universal algebras are the same. It then follows that a reflection of a variety of universal algebras into an idempotent subvariety has stable units...
متن کاملToric Varieties in a Nutshell
In algebraic geometry a variety is called toric if it has an embedded torus (C∗)n whose Zariski closure is the variety itself. We focus on normal toric varieties since they can be studied from a combinatorial point of view. We introduce the basic theory and construct tools to compute explicit geometric information from combinatorics including smoothness, compactness, torus orbits, subvarieties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008